Contraction regulates site-specific phosphorylation of TBC1D1 in skeletal muscle

نویسندگان

  • Kanokwan Vichaiwong
  • Suneet Purohit
  • Ding An
  • Taro Toyoda
  • Niels Jessen
  • Michael F. Hirshman
  • Laurie J. Goodyear
چکیده

TBC1D1 (tre-2/USP6, BUB2, cdc16 domain family member 1) is a Rab-GAP (GTPase-activating protein) that is highly expressed in skeletal muscle, but little is known about TBC1D1 regulation and function. We studied TBC1D1 phosphorylation on three predicted AMPK (AMP-activated protein kinase) phosphorylation sites (Ser231, Ser660 and Ser700) and one predicted Akt phosphorylation site (Thr590) in control mice, AMPKα2 inactive transgenic mice (AMPKα2i TG) and Akt2-knockout mice (Akt2 KO). Muscle contraction significantly increased TBC1D1 phosphorylation on Ser231 and Ser660, tended to increase Ser700 phosphorylation, but had no effect on Thr590. AICAR (5-aminoimidazole-4-carboxyamide ribonucleoside) also increased phosphorylation on Ser231, Ser660 and Ser700, but not Thr590, whereas insulin only increased Thr590 phosphorylation. Basal and contraction-stimulated TBC1D1 Ser231, Ser660 and Ser700 phosphorylation were greatly reduced in AMPKα2i TG mice, although contraction still elicited a small increase in phosphorylation. Akt2 KO mice had blunted insulin-stimulated TBC1D1 Thr590 phosphorylation. Contraction-stimulated TBC1D1 Ser231 and Ser660 phosphorylation were normal in high-fat-fed mice. Glucose uptake in vivo was significantly decreased in tibialis anterior muscles overexpressing TBC1D1 mutated on four predicted AMPK phosphorylation sites. In conclusion, contraction causes site-specific phosphorylation of TBC1D1 in skeletal muscle, and TBC1D1 phosphorylation on AMPK sites regulates contraction-stimulated glucose uptake. AMPK and Akt regulate TBC1D1 phosphorylation, but there must be additional upstream kinases that mediate TBC1D1 phosphorylation in skeletal muscle.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TBC1D1 Regulates Insulin- and Contraction-Induced Glucose Transport in Mouse Skeletal Muscle

OBJECTIVE TBC1D1 is a member of the TBC1 Rab-GTPase family of proteins and is highly expressed in skeletal muscle. Insulin and contraction increase TBC1D1 phosphorylation on phospho-Akt substrate motifs (PASs), but the function of TBC1D1 in muscle is not known. Genetic linkage analyses show a TBC1D1 R125W missense variant confers risk for severe obesity in humans. The objective of this study wa...

متن کامل

Exercise increases TBC1D1 phosphorylation in human skeletal muscle.

Exercise and weight loss are cornerstones in the treatment and prevention of type 2 diabetes, and both interventions function to increase insulin sensitivity and glucose uptake into skeletal muscle. Studies in rodents demonstrate that the underlying mechanism for glucose uptake in muscle involves site-specific phosphorylation of the Rab-GTPase-activating proteins AS160 (TBC1D4) and TBC1D1. Mult...

متن کامل

Genetic disruption of AMPK signaling abolishes both contraction- and insulin-stimulated TBC1D1 phosphorylation and 14-3-3 binding in mouse skeletal muscle.

TBC1D1 is a Rab-GTPase-activating protein (GAP) known to be phosphorylated in response to insulin, growth factors, pharmacological agonists that activate 5'-AMP-activated protein kinase (AMPK), and muscle contraction. Silencing TBC1D1 in L6 muscle cells by siRNA increases insulin-stimulated GLUT4 translocation, and overexpression of TBC1D1 in 3T3-L1 adipocytes with low endogenous TBC1D1 express...

متن کامل

Of mice and men: filling gaps in the TBC1D1 story.

Skeletal muscle is the major tissue for the increased glucose disposal caused by insulin or exercise. Each stimulus elevates GLUT4 glucose transporter translocation to skeletal muscle’s cell surface membranes, but distinct signalling pathways lead to this common outcome. Insulin’s proximal signalling events include activation of the insulin receptor, phosphatidylinositol 3-kinase, and Akt2. The...

متن کامل

ThrAla-AS160 knock-in mutation does not impair contraction/ AICAR-induced glucose transport in mouse muscle

Ducommun S, Wang HY, Sakamoto K, MacKintosh C, Chen S. ThrAla-AS160 knock-in mutation does not impair contraction/ AICAR-induced glucose transport in mouse muscle. Am J Physiol Endocrinol Metab 302: E1036–E1043, 2012. First published February 7, 2012; doi:10.1152/ajpendo.00379.2011.—AS160 and its closely related protein TBC1D1 have emerged as key mediators for both insulinand contraction-stimul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 431  شماره 

صفحات  -

تاریخ انتشار 2010